FOREMAN
=

-

DEVELOPING ANSIBLE

MODULES FOR

FOREMAN AND
KATELLO

$ WHOAMI

Evgeni Golov
Senior Software Engineer at Red Hat
ex-Consultant at Red Hat
Debian Developer
v FOSS v

v automation v

FOREMAN + ANSIBLE = @

Foreman has an API

Everyone loves writing YAML instead of
clicking in a GUI

So we wrote modules to allow that

They have bugs, missing features or we miss
whole modules

This is how everyone can help

FOREMAN ANSIBLE
MODULES

FOREMAN ANSIBLE
MODULES

e A collection of Ansible modules to interact
with the Foreman API

e Also supports Foreman plugins like Katello,

Remote Execution, SCC

e Provide an abstraction layer, so you don't

nave to repeat yourself

AN EXAMPLE

- name: Create ACME Organization
foreman_organization:
username: admin
password: changeme

server_url: https://foreman.example.com
name: ACME
state: present

UNDER THE HOOD

Connect to the API

Search for an entit?/ (usually by name)
Create/Update/Delete depending on current
state and user input

Report to the user

WRITING FOREMAN
ANSIBLE MODULES

ORGANIZATION MODULE

class ForemanOrganizationModule(ForemanEntityAnsibleModule):
pass

module = ForemanOrganizationModule(
entity_spec=dict(
name=dict(required=True),
description=dict(),
label=dict(),

)/
)

with module.api_connection():
module.run()

REFERENCE AN
ORGANIZATION (LIST) FROM
ANOTHER MODULE

module = ForemanLocationAnsibleModule(
entity_spec=dict(

organizations=dict(type='entity_list'),

)/
)

with module.api_connection():
module.run()

USING TAXONOMIES IN
MODULES

class ForemanDomainModule(ForemanTaxonomicEntityAnsibleModule)
pass

module = ForemanDomainModule(
entity_spec=dict(
name=dict(required=True),

)/

)

with module.api_connection():
module.run()

RENAMING ENTITIES

module = ForemanDomainModule(
argument_spec=dict(
updated_name=dict(),
)
entity_spec=dict(
name=dict(required=True),

)/

)

with module.api_connection():
module.run()

CUSTOM DATA HANDLING

entity_dict = module.clean_params()
with module.api_connection():
entity_dict, scope =
module.handle_organization_param(entity_dict)
entity = module.find_resource_by_ name(

'content_credentials', name=entity_dict['name'],
params=scope, failsafe=True)

module.ensure_entity('content_credentials'’,
entity_dict, entity, params=scope)

CUSTOM WORKFLOW
HANDLING

entity_dict = module.clean_params()
with module.api_connection():
params = {'id': entity_dict['name']}
power_state = module.resource_action('hosts’,
'power_status', params=params)
if module.state == 'state':
module.exit_json(power_state=power_state['state'])

elif (module.state == power_state['state']):
module.exit_json()
else:
params|['power_action'] = module.state
module.resource_action('hosts', 'power',
params=params)

AVAILABLE HELPERS

list resource

show resource

find resource/

find resource by {name,title,id}
find resources/

find resources by {name,title,id}
ensure entity

resource action

TESTING FOREMAN
ANSIBLE MODULES

OUR TEST SUITE

e Ansible playbooks for each module
= Handle setup, tests, teardown
m Ensure idempotency by checking the
changed property
 VCRpy is used to record APl interaction
m Tests can berunin test or record
mode
m C| always runs test mode
= Developers need record mode when
APl requests change

TEST EXECUTION

e make test runs tests for ALL modules

e make test <module> only for that one
module

e nake record <module>when a new
recording is needed

EXAMPLE:
ORGANIZATION.YML

include: tasks/organization.yml
vars:
organization_state: present
expected_change: true

include: tasks/organization.yml
vars:
organization_state: present
expected_change: false

EXAMPLE:

TASKS/0ORGANIZATION. YML

name: "Testing organization"
vars:

- organization_name: "Test Organization"

- organization_description: "A test organization"
foreman_organization:

name: "{{ organization_name }}"

description: "{{ organization_description }}"

state: "{{ organization_state }}"
register: result
assert:
fail_msg: "Testing organization failed"
that:
- result.changed == expected_change
when: expected_change is defined

DEVELOPMENT
ENVIRONMENT

PYTHON ENVIRONMENT FOR
USERS

e Modules and dependencies are available as
RPM

e And from Ansible Galaxy (modules) / PyPI
(dependencies)

https://github.com/theforeman/foreman-ansible-modules#installation-via-rpm

PYTHON ENVIRONMENT FOR
DEVELOPERS

e A devel setup has more dependencies
* Using a virtualenv is highly recommended!
= ansible python interpreter =
"/usr/bin/env python"
e The tests also require a configuration file

python3 -m venv ./venv
source ./venv/bin/activate

make test-setup

FOREMAN/KATELLO
ENVIRONMENT

® (re-)running existing tests (make test) uses
recorded fixtures
= this is great to ensure APl requests
didn't change after refactorinF
® real behavior changes will yield "cannot
match request" errors
* behavior changes require new recording
= need torun make record <testname>
m requires running Foreman/Katello

FOREMAN/KATELLO
ENVIRONMENT

e on Linux, the easiest way is forklift

* any instance that can be destroyed is fine

e set URL and admin credentials in
tests/test playbooks/vars/server.ym]

https://github.com/theforeman/forklift/#quickstart

DEBUGGING MODULES

If you're used to print-based debugging,
Ansible will hide all interesting information from
you and you'll need a different approach.

RAISE EXCEPTION AND
MODULE .WARN

e raise Exception("the message")
e module.warn("the message")
* not nice, but gets the job done

Q

q is the Quick-and-dirty debugging output for
tired programmers.

e g("the message")
e output goesto /tmp/qg

https://pypi.org/project/q/

A REAL DEBUGGER

e pdb is the default Python debugger, but
doesn't play nice with Ansible
= mostly because Ansible forks another
Python process
e a debugger with remote debugging feature
Is useful: epdb, remote-pdb

https://docs.ansible.com/ansible/latest/dev_guide/debugging.html

DEMO

let's fix #586 together

https://github.com/theforeman/foreman-ansible-modules/issues/586

THANKS!

N evgeni@golov.de
@ die-welt.net
W @zhenech
@ @zhenech@chaos.social
() @evgeni

mailto:evgeni@golov.de
https://www.die-welt.net/
https://twitter.com/zhenech
https://chaos.social/@zhenech
https://github.com/evgeni

