
KATELLO AND ANSIBLEKATELLO AND ANSIBLE
FOR AUTOMATEDFOR AUTOMATED

TESTING ANDTESTING AND
RELEASING OFRELEASING OF

PACKAGESPACKAGES
1

$ WHOAMI$ WHOAMI

Evgeni Golov

Software Engineer at Red Hat

ex-Consultant at Red Hat

Debian and Grml Developer

♥ FOSS ♥

♥ automation ♥

2

MOTIVATIONMOTIVATION
you build a software product
you ship the product as distribution packages
to your customers
the product has dependencies outside a base
OS (Ruby? node.js? Django?)
unit tests are great, but you also need to test
the shipped bits

3

ANSIBLEANSIBLE

4

$ WHATIS ANSIBLE$ WHATIS ANSIBLE

radically simple IT automation engine
contains a big number of modules to execute
actions and ensure state on target hosts
easily extended by self-written modules
integrates well with REST APIs

5

ANSIBLE TERMINOLOGYANSIBLE TERMINOLOGY
Module - discrete units of code that can be
used from the command line or in a playbook
task to execute an action or ensure a state
Task - Module invocation with a set of
parameters
Play - list of Tasks to be executed against a set
of hosts
Playbook - �le containing one or more Plays

6

KATELLOKATELLO

7

$ WHATIS KATELLO$ WHATIS KATELLO

plug-in to Foreman
adds content management functionality (RPM,
DEB, Puppet, Containers, Files)
allows to group content for tailored
presentation to consumers
allows snapshots of content for versioning

8

KATELLO TERMINOLOGYKATELLO TERMINOLOGY
Repository - Collection of content
Product - Collection of related repositories
(CentOS 7 distribution with repositories for
i686 and x86_64)
Lifecycle Environment - Environment/stage
in your deployment cycle (Test, QA,
Production)

Library - special LE that receives the content
�rst

9

KATELLO TERMINOLOGYKATELLO TERMINOLOGY
Content View - Selection of repositories
(CentOS 7 + EPEL 7)

Publish creates a snapshot (Version) of the
selected repositories available to Library
Promote copies a published Content View
Version to another LE

Composite Content View - Selection of
Content Views (base OS + Application)

can be published and promoted like a CV

10

KATELLO EXAMPLEKATELLO EXAMPLE

11

STAGING CHANGES WITHSTAGING CHANGES WITH
KATELLOKATELLO

every time a (Composite) Content View is
published, a new Version is created
this version can be made available to clients by
promoting it to a certain Lifecycle Environment
you can revert to older versions, if problems
are found after a promotion

12

STAGING CHANGES WITHSTAGING CHANGES WITH
KATELLO (EXAMPLE)KATELLO (EXAMPLE)

DEV moving fast, getting changes on every
commit
TEST getting changes daily, after a minimal
gating happened
QA getting changes weekly, after a basic set of
tests passed
PROD getting changes whenever QA is happy

13

TESTING WITHTESTING WITH
KATELLO AND ANSIBLEKATELLO AND ANSIBLE

14

ARCHITECTURE OVERVIEWARCHITECTURE OVERVIEW
Source in Git (GitLab)
Jenkins is the main executor, triggered by
GitLab
Katello is the package store
Ansible is used by Jenkins to interact with the
Katello API

15

TEST WORKFLOWTEST WORKFLOW
Jenkins builds packages on every change
(using Koji)
Packages are synced to Katello
Katello also syncs external packages (RHEL,
RHSCL)
Jenkins creates/updates ContentView (RHEL,
RHSCL, Packages from Koji)
Jenkins tests the content in Library by installing
the software and running end-to-end tests
Jenkins promotes ContentView to Test and QA

16

PACKAGE BUILDINGPACKAGE BUILDING
On every change to the source, the following

steps are executed:
a new source tarball is generated
the RPM .spec is updated
the RPM is built using Koji

17

PACKAGE TESTINGPACKAGE TESTING
Jenkins runs a daily pipeline which:

Synchronizes the packages from Koji into
Katello (Library)
Executes a test Ansible playbook in a Vagrant
VM
When the playbooks �nishes successfully, the
Content is promoted to Test

18

PACKAGE TESTINGPACKAGE TESTING
We use for testing
Set of Ansible playbooks and Vagrant �les

Create Vagrant VMs
Con�gure package sources
Install Katello and a Content Proxy
Execute bats tests that verify the
functionality of the setup

Same setup can be used on your laptop (if it
has enough RAM)

forklift

19

https://github.com/theforeman/forklift/

PACKAGE TESTINGPACKAGE TESTING
Synchronization is executed via
katello_sync from

Content View is published via
katello_content_view_publish

Promotion happens via
katello_content_view_version_promote

foreman-ansible-
modules

20

https://github.com/theforeman/foreman-ansible-modules/

FURTHER TESTING ANDFURTHER TESTING AND
RELEASINGRELEASING

Daily tests are limited and take "only" ~1h
Once a week content from Test is promoted to
QA
This triggers a large test-suite (>24h!)
Plus manual veri�cation of features and �xed
bugs that have no automated tests
After successful veri�cation, the software is
released

21

ARCHIVING RELEASESARCHIVING RELEASES
Each weekly snapshot is archived

to an own Lifecycle Environment (created
with katello_lifecycle_environment)
referenced by an own Activation Key
(created with katello_activation_key)

this allows to reproduce older environments
and re-test bugs

22

REFERENCESREFERENCES
our Jenkins jobs
our Ansible playbooks

23

https://github.com/SatelliteQE/robottelo-ci/tree/master/jobs/release
https://github.com/SatelliteQE/robottelo-ci/tree/master/ansible/playbooks

THANKS!THANKS!

evgeni@golov.de

die-welt.net

@zhenech

@zhenech@chaos.social

@evgeni

zhenech

24

mailto:evgeni@golov.de
https://www.die-welt.net/
https://twitter.com/zhenech
https://chais.social/@zhenech
https://github.com/evgeni
https://stackexchange.com/users/1107433/zhenech

